15CS32

USN

Third Semester B.E. Degree Examination, Dec.2019/Jan.2020 Analog and Digital Electronics

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Explain the construction and principles of operation of JFET.

(08 Marks)

b. Explain with neat sketches, the operation and parameter of n-channel depletion type MOSFET. (08 Marks)

OR

- a. Discuss characteristics of an ideal op-amp and compare with practical op-amp. (08 Marks)
 - b. For the circuit shown in Fig.Q2(b) determine the valve of drain source voltage (V_{Ds}). Assume $V_{GS} = -0.8V$.

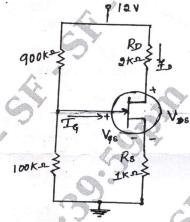
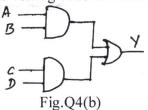


Fig.Q2(b)

(08 Marks)

Module-2


- 3 a. What are universal gates? Draw the logic circuit for y = (A + B + C)(A + B + C) using universal gates. (05 Marks)
 - b. Find the minimal SOP of the following Boolean function using K-Map. $F(a, b, c, d) = \sum m(7, 9, 10, 11, 12, 13, 14, 15)$

(05 Marks)

Define Hazards? How to design a static 1 hazard free circuit? Explain with an example.
(06 Marks)

OR

- 4 a. Simplify the expression $y = f(A, B, C, D) = \sum m (1, 2, 8, 9, 10, 12, 13, 14)$ using Quine McClusky Method. (10 Marks)
 - b. What is the need of HDL? Write the verilog code for the circuit. Shown in Fig.Q4(b)

(06 Marks)

Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.

Module-3

- What is multiplexer? Write the logic circuit and truth table of 4:1 multiplexer. (05 Marks) Explain BCD to Decimal decoder along with circuit diagram. (05 Marks)
 - What is magnitude comparator? Design and explain I bit magnitude comparator. (06 Marks)

Implement the following function using PLA 6

 $A(x, y, z) = \sum m(1, 2, 4, 6)$

B $(x, y, z) = \sum m(0, 1, 6, 7)$

 $C(x, y, z) = \sum m(2, 6)$ b. Implement the Boolean function expressed by

SOP $f(a, b, c, d) = \sum m(1, 3, 4, 5, 9, 11, 12)$ using 8:1 MUX.

Write a note on parity Checker.

(06 Marks)

(06 Marks)

(04 Marks)

Module-4

7 What is flip flop? Explain the working of JK master slave flip flop using NAND gates.

(08 Marks)

Write the Execution table of SR, D, JK and T flip flop. b.

(04 Marks)

Write the difference between synchronous and Asynchronous counter.

(04 Marks)

- Using Positive edge triggered D flip flop, draw the logic diagram of 4bit SISO Register. Draw the timing diagram to shift binary number 1110 into Register. (05 Marks)
 - Explain with neat diagram 4 bit switched tail counter

(05 Marks)

Explain how shift Register can be applied for sequence detector.

(06 Marks)

Module-5

- Explain a 3 bit binary Rippledown counter. Give block diagram, truth table and output 9 waveforms. (08 Marks)
 - Design a sequences, a module 4 Irregular counter with following counting sequence using D flip flop. (08 Marks)

OR

10 Explain 4 bit D/A converter. (10 Marks)

What is binary ladder? Explain the binary ladder with digital input of 1000.

(06 Marks)